Transcriptional regulation of a contractile gene by mechanical forces applied through integrins in osteoblasts.

نویسندگان

  • Jiaxu Wang
  • Ming Su
  • Jennie Fan
  • Arun Seth
  • Christopher A McCulloch
چکیده

We examined mechanotranscriptional regulation of the contractile gene, alpha-smooth muscle actin (SMA), in osteoblastic cells. Tensile forces were applied through collagen-coated magnetite beads to ROS17/2.8 cells. These cells were desmin-, vimentin+ and expressed low levels of SMA. After force application (480 piconewton/cell), SMA protein and mRNA were increased but beta-actin was unchanged. Beads coated with bovine serum albumin or poly-L-lysine produced no change of SMA. In cells transiently transfected with plasmids containing the SMA promoter fused to beta-galactosidase or green fluorescent protein coding sequences, SMA promoter activity was increased by approximately 60% after 4 h of force, whereas control (Rous sarcoma virus) promoter activity was unaffected. Transfections with beta-galactosidase or green fluorescent protein reporter constructs showed that force-loaded cells exhibited higher beta-galactosidase activity than cells without force. Cytochalasin D and latrunculin B inhibited force-induced increases of SMA promoter activity. Deletion analyses showed that SMA promoter activity was increased approximately 70% after force with a minimal construct containing 155 bp upstream of the translation start site. The force effect on the SMA promoter was abrogated in cells transfected with CArG-B box mutants. Gel mobility shift analyses of nuclear extracts showed strong binding to the CArG-B motif after force. We conclude that the CArG-B box is a force-responsive element in the SMA promoter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions.

Mechanical stimulation of bone induces new bone formation in vivo and increases the metabolic activity and gene expression of osteoblasts in culture. We investigated the role of the actin cytoskeleton and actin-membrane interactions in the transmission of mechanical signals leading to altered gene expression in cultured MC3T3-E1 osteoblasts. Application of fluid shear to osteoblasts caused reor...

متن کامل

Specific inhibition of skeletal alpha-actin gene transcription by applied mechanical forces through integrins and actin.

Skeletal alpha-actin (skA), a prominent fetal actin isoform that is re-expressed by adult cardiac myocytes after chronic overload in vivo, provides a model for studying cytoskeletal gene regulation by mechanical forces in vitro. We have determined the mechanisms by which perpendicular applied forces acting through integrins and the actin cytoskeleton regulate the expression of skA. Rat-2 fibrob...

متن کامل

Mechano-Coupling and Regulation of Contractility by the Vinculin Tail Domain

Vinculin binds to multiple focal adhesion and cytoskeletal proteins and has been implicated in transmitting mechanical forces between the actin cytoskeleton and integrins or cadherins. It remains unclear to what extent the mechano-coupling function of vinculin also involves signaling mechanisms. We report the effect of vinculin and its head and tail domains on force transfer across cell adhesio...

متن کامل

Magneto-mechanical Stimulation of Bone Marrow Mesenchymal Stromal Cells for Chondrogenic Differentiation Studies

Mechanical interaction of cells and their surroundings are prominent in mechanically active tissues such as cartilage. Chondrocytes regulate their growth, matrix synthesis, metabolism, and differentiation in response to mechanical loadings. Cells sense and respond to applied physical forces through mechanosensors such as integrin receptors. Herein, we examine the role of mechanical stimulation ...

متن کامل

Integrins and extracellular matrix in mechanotransduction.

Integrins bind extracellular matrix fibrils and associate with intracellular actin filaments through a variety of cytoskeletal linker proteins to mechanically connect intracellular and extracellular structures. Each component of the linkage from the cytoskeleton through the integrin-mediated adhesions to the extracellular matrix therefore transmits forces that may derive from both intracellular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 25  شماره 

صفحات  -

تاریخ انتشار 2002